Do Artificial Sweeteners Affect Eating Habits and The Diet-Mental Health Relationship?

Artificial sweeteners—sugar substitutes that satisfy our cravings for sugar but contain low calories—have become a popular alternative to reduce the risks associated with high-sugar consumption and means of bodyweight management. Yet, the long-term effects of these nonnutritive sweeteners (NNS) have yet to be determined, particularly how our brain responds differently to NNS and nutritive sweeteners (NSW), and consequently, the effects they have on our eating behaviors. While previous clinical trials have investigated the impact of NNS and NSW on neurobehavioral states, these studies were limited as they focused on mostly male cohorts within normal body mass index (BMI). 

The long-term effects of these NNS and their effects on eating behaviors have yet to be determined.

To create more generalizable data, Yunker et al. (2021), investigators from the University of Southern California, led a randomized crossover trial that aimed to elucidate the role of gender and BMI status on eating after ingesting NNS compared to NSW. 

The authors designed a longitudinal study, in which all participants received a complete sequence of interventions in random order across three separate visits and utilized functional MRI imaging (fMRI) and an ad libitum (Latin for “at one’s pleasure”) buffet meal for evaluation.

%learn about nutrition mental health %The Center for Nutritional Psychology

 

Through fMRI, the authors measured the blood oxygen level-dependent (BOLD) signals, which reflect neural activity, in various brain areas as participants responded to different types of food cues after ingesting either the sucrose (an NSW), sucralose (an NSS), or water (a control) interventions. At defined intervals, participants also had their blood sampled to assess changes in endocrine response across these interventions (Fig. 1). Caloric intake was measured through the buffet meal for each participant to compare differences in appetitive and feeding behaviors across interventions.

%learn about nutrition mental health %The Center for Nutritional Psychology

Figure 1. Study design from Yunker et al., JAMA Network Open, 2021.

 

Artificial Sweeteners May Cause Overeating

BOLD signals were greater in the medial frontal (MFC) and orbitofrontal cortices (OFC) in obese individuals when presented with food cues after ingesting sucralose compared to non-food cues. However, this difference was not observed in participants who’s BMIs were categorized as healthy or overweight, suggesting a distinct intersectional effect of BMI status on one’s neurobehavioral response to food upon ingesting artificial sweeteners. Furthermore, as opposed to male counterparts, BOLD signals were greater in the MFC and OFC of females and were heightened when the participants were females with obesity during the sucralose intervention in the food cue tasks.

The significant increase in BOLD signals within the MFC area/region of the brain is intriguing because previous studies have shown this brain region to be responsible for conditioned motivation for eating in mice (Petrovich, 2007). Likewise, as the region houses higher cognitive function, the higher BOLD signals suggest that participants may have thought more about eating when exposed to food cues after taking artificial sweeteners (Jobson, 2021). 

 

The higher BOLD signals suggest that participants may have thought more about eating when exposed to food cues after taking artificial sweeteners.

 

The increase in BOLD OFC signal is another interesting result as studies have correlated this brain area with processing the perception of food value, taste reward, and even smell in humans (Small, 2007; Seabrook, 2020). The primary concern concluded by this study is the possibility of overeating—and, in turn, obesity and its comorbidities—when individuals turn to sugar substitutes, especially for women who are already obese.

Although the authors conclude there was minimal effect on endocrine response between NSS and NSW, this study found reduced suppression of ghrelin–the “hunger hormone”–after ingesting sucralose, which suggests that artificial sweeteners may impair the normal homeostatic signaling that regulates feeding behaviors. As such, this would result in a longer period of “feeling hungry” which can contribute to overeating. This is evident in the study in which participants consumed more calories after ingesting sucralose, and this effect was more pronounced in females (no interaction/influence of BMI status found).

 

Artificial sweeteners may impair the normal homeostatic signaling that regulates feeding behaviors.

 

Taken together, the findings presented here emphasize the importance of considering biological factors when it comes to assessing the use and efficacy of artificial sweeteners for health-related concerns and body weight management.

 

References

Jobson, D. D., Hase, Y., Clarkson, A. N., & Kalaria, R. N. (2021). The role of the medial prefrontal cortex in cognition, ageing and dementia. Brain communications, 3(3), fcab125. https://doi.org/10.1093/braincomms/fcab125 

Petrovich, G. D., Ross, C. A., Holland, P. C., & Gallagher, M. (2007). Medial prefrontal cortex is necessary for an appetitive contextual conditioned stimulus to promote eating in sated rats. The Journal of neuroscience : the official journal of the Society for Neuroscience, 27(24), 6436–6441. https://doi.org/10.1523/JNEUROSCI.5001-06.2007

Small, D. M., Bender, G., Veldhuizen, M. G., Rudenga, K., Nachtigal, D., & Felsted, J. (2007). The role of the human orbitofrontal cortex in taste and flavor processing. Annals of the New York Academy of Sciences, 1121, 136–151. https://doi.org/10.1196/annals.1401.002 

Seabrook, L. T., & Borgland, S. L. (2020). The orbitofrontal cortex, food intake and obesity. Journal of psychiatry & neuroscience : JPN, 45(5), 304–312. https://doi.org/10.1503/jpn.190163 

Yunker, A. G., Alves, J. M., Luo, S., Angelo, B., DeFendis, A., Pickering, T. A., Monterosso, J. R., & Page, K. A. (2021). Obesity and Sex-Related Associations With Differential Effects of Sucralose vs Sucrose on Appetite and Reward Processing: A Randomized Crossover Trial. JAMA network open, 4(9), e2126313. https://doi.org/10.1001/jamanetworkopen.2021.26313 

Nutritional Psychology: Can a 1-Week Junk Food Diet Change Your Brain and Lead to Overeating?

Researchers are zeroing in on whether high-fat, high-sugar foods can impact our brain, and influence our eating choices. It turns out that they can and do, and the Hippocampus, a major structure within our brain, is one of junk food’s favorite targets.

We were excited when we heard about this recently published study. We knew it belonged in the CNP Diet and Brain Research Category, and would be the perfect flagship study for our first Diet-Mental Health Break (DMHB). CNP’s DMHBs are quick 2-3 animated cartoons that take cutting-edge research studies and turn them into highly palatable (no pun intended) animations that support conceptualization in the field of Nutritional Psychology (NP).

This animated series is designed for inclusion within CNP’s Nutritional Psychology curriculum and can be used by educators, mental health professionals, dietitians, and other interested individuals to develop an understanding of how diet affects mood, behavior, and mental health. This increased understanding can lead to tools to better support our Diet-Mental Health Relationship (DMHR).

The lead author of this study, Dr. Richard Stevenson from Macquarie University in Sydney, Australia, has been investigating the effects of what are called “highly-palatable foods” on a part of our brain called the hippocampus. Investigation in this area had been done before, but this study was only the second to demonstrate whether exposure to a western-style diet actually causes hippocampal impairment (the first study on this topic can be found here).

Study Methodology

Dr. Stevenson’s study included 102 healthy university students, all who regularly ate a healthy, balanced diet. For the duration of the experiment, half of the group ate their regular balanced diet, while the other half ate their balanced diet plus additional portions of junk food each day.

At the end of the week, both groups’ hippocampal functioning was tested to see whether the junk food added to their diet changed their desire for these foods. The hippocampus is the part of our brain that helps us to learn, remember, and control our appetite.

Study Findings

The participants’ desire to eat the highly palatable foods was significantly increased to the point that they continued to eat even after they were full. This study showed that when we eat junk-style foods – foods high in processed sugars and fats – the high-sensory experiences of anticipation, pleasure, and reward are encoded into our memory. This memory influences what we like and want to eat, and how much. It sets us on a path to want and like more highly stimulating junk foods, and to eat more of them. In the end, this study demonstrated that just one week of added junk food significantly impaired the ability to control one’s appetite. Food for thought…

The full research study by Dr. Stevenson and his team, entitled “Hippocampal-dependent appetitive control is impaired by experimental exposure to a Western-style diet,” can be found here. Watch CNP’s animated Diet-Mental Health Break (DMHB) video on this study here.

Recent Articles

SUPPORT THE FIELD

CNP is a non-profit that relies on our small team of staff and our many dedicated volunteers.

If you find nutritional psychology meaningful, please consider supporting our mission in one of the following ways:

We would also love to connect with you on social media!

CONTINUING EDUCATION